000 02334nam a22002657a 4500
003 UAHC
005 20250627135856.0
008 250627s2020 -uk|||| |||| 00| 0 eng d
020 _a9781108455145
040 _aUAHC
_cUAHC
082 _a006.31
_bD325
100 _aDeisenroth, Marc Peter
_921745
245 1 0 _aMathematics for machine learning
_cMarc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong.
260 _aCambridge :
_bCambridge University Press,
_c2020.
300 _a371 páginas.
505 _a1. Introduction and motivation -- 2. Linear algebra -- 3. Analytic geometry -- 4. Matrix decompositions -- 5. Vector calculus -- 6. Probability and distribution -- 7. Optimization -- 8. When models meet data -- 9. Linear regression -- 10. Dimensionality reduction with principal component analysis -- 11. Density estimation with Gaussian mixture models -- 12. Classification with support vector machines.
520 _aThe fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
650 0 _aAprendizaje automático
_921744
650 0 _aAprendizaje automático
_xMatemáticas
_921748
650 0 _aMatemáticas
_9535
700 _aFaisal, A. Aldo
_921746
_eautor
700 _aOng, Cheng Soon
_921747
_eautor
900 _a006.31 DEI
942 _2ddc
_cBK
999 _c62718
_d62718